Updated: 19/01/2025
Nests are extremely important for males’ fitness when reproduction and parental care are associated with these structures. The possession of a nest and its conditions may determine male attractiveness (due to female reproductive decisions) and offspring survival (due to protection against adverse biotic and abiotic conditions). Nest construction and maintenance, however, may also impose costs to males: nest-related behaviors may demand time and energy or may increase mortality risks. The costs and benefits approach is usually used to understand the evolution and maintenance of behavioral traits, and we explored this framework in a study with the Neotropical harvestmen Zygopachylus albomarginis.
During the breeding season, nesting males of Z. albomarginis spend several months building, repairing, cleaning and defending their mud nests. After mating, females abandon the eggs under the protection of males, who actively defend them against predators and fungal infection. Although nest defense, nest maintenance, and offspring protection contribute to different components of males’ fitness, they are performed concomitantly and entail similar behaviors. For instance, when a nesting male chases away a conspecific individual, he defends the possession of his nest at the same time he protects the offspring against a potential egg predator (see video below). Moreover, nest maintenance requires males to remove debris and prevent fungal growth inside the nest, actions that also contribute to protect eggs against infection.
VIDEO: [Credit: Gustavo S. Requena]
In our Early View Paper “Lack of costs associated with nest-related behaviors in an arachnid with exclusive paternal care”, we quantified the costs of nest-related behaviors in Z. albomarginis under natural conditions. Because males are mainly constrained to forage in a small area close to the nest for up to five months, we expected high energetic costs of being associated with a nest. However, we did not find any evidence of decline in the physical conditions of nesting males over time. Interestingly, males may spend several days eating fungal hyphae growing inside their nests, which we suggest constitutes an important food resource to stationary individuals and compensates for energetically costly activities performed for so long periods.
Due to contest injuries over the possession of a nest or its conspicuousness, we also expected high mortality risks associated with nest-related behaviors. The survival probabilities of stationary nesting males, however, were higher than the probabilities of vagrant individuals not associated with nests surviving. This pattern of differential mortality dependent on Z. albomarginis movement activity may be explained by the potential higher chances of encountering predators while moving, particularly walking among trees and crossing the leaf litter.
Given that females lay eggs exclusively inside nests and the costs of nest maintenance and defense are extremely low (if not absent), the million dollars question is “why do not all males have a nest?” Males add salivary secretions to the mud at the moment they build the nests. One possibility, therefore, is that the production of such secretion is costly and only males in good body condition would be able to invest in nest construction. Although the costs of performing this activity was not evaluated in our study, the fact that vagrant males may occupy an empty nest or even aggressively attack a nesting male and take over his nest suggests that some individuals rely on usurpation as an alternative reproductive tactic to acquire nests.
The authors through Gustavo S Requena