Tag Archives: Conservation

Lessons Learned Since Entering the Workforce

10409073_10152834818463795_1564804749594337949_n

In December of last year I dusted off my nice suit, pleasantly learned that I can still tie a tie, and took a job with an environmental non-profit in Galveston called Artist Boat. It’s a small but passionate organization dedicated to promoting the preservation and awareness of coastal and marine ecosystems through science and art. This is my first experience with on-the-ground conservation and land management, and though I still have plenty to learn I thought I’d share some of my experiences with you all.

My official title is Habitat and Stewardship Program Manager, which means I oversee our habitat restoration programs and the management of our 360-acre Coastal Heritage Preserve (CHP). A large-scale conservation project such as this is incredibly collaborative. Within 24 hours of starting at Artist Boat, I had a list of about 20 names and numbers of various agency folks (National Fish and Wildlife, US Fish and Wildlife, Texas Parks and Wildlife, Location Outdoorsy Term and Wildlife, etc.) who I needed to introduce myself to, because what we do wouldn’t work without them. Now our habitat restoration projects are largely volunteer based, and our management actions at CHP (removing invasive species, planting native grasses, and monitoring the Preserve to name a few) will largely be done by volunteers as well. Organizations with more staff may not require these types of partnerships for their conservation projects, because they can to do more work in house. For the most part though, preserving, managing, and monitoring habitats has become so complex and expensive that it’s just not done alone anymore. Therefore, social skills and emotional intelligence can be just as important as technical skills in this field.

The downside of involving so many parties is that new ideas, methods, or any other shifts in management take much longer to implement and face more obstacles. With all of the current threats facing habitat conservation (development, lack of funding, a changing climate), it’s going to be necessary for stewards of these areas to not only be flexible and open-minded, but to be proactive rather than reactive. As far as planning goes, there’s a fine line between remaining flexible to changing conditions and not planning for anything. There is some level of specificity a habitat management plan should have, and it’s greater than “we’ll manage the habitat according to the best available practices at any given time.” This is something that I’ve personally struggled with, yet has also been a catalyst for my professional growth. The best managers can plan for things effectively enough that rapid implementation can occur if needed, but are also flexible enough to change paths should the data or scenario require it.

I’ve been working at Artist Boat for a little over nine months now. Like any genuine learning experience, it’s had plenty of disappointing and satisfying days. I’ve felt anxious, proud, challenged, overwhelmed, exhilarated, stressed, fulfilled, ignorant, engaged, confused, and many other adjectives throughout my employment. However, I am thrilled to be working for a company whose values line up so well with my own. And throughout my brief stint overseeing various habitat restoration projects, there’s been some evidence that I don’t totally suck at it. One of our beach renourishment projects was deemed one of the top 5 restored beaches in the country by the American Shores and Beaches Preservation Association, and we were recently awarded a year long grant to fund management and stewardship tasks at CHP. So to any of our readers who may be looking for (or recently accepted) conservation jobs in the private sector, specifically with NGOs, let me say it’s going to be a hell of an experience. But if you’re someone who is stupidly persistent, can handle five different things at once, and wants to be engaged in meaningful and relevant work, you’d exactly what the field needs (and send me your resume).

Some other lessons that I’ve learned since entering the non-profit world:

-I find it much easier to obtain quality genetic data from seventy worms than to solve the Rubik’s Cube that is setting the schedules for five staff members. However, when done correctly, both are extremely satisfying.

-I’m pretty sure that a $15 coffee bag is responsible for approximately $3,000 in employee productivity.

-Some of our best partners in our restoration projects work for the oil and gas industry (specifically Shell and CITGO). Interesting, but true.

-Creating a culture of learning would do wonders for organizations who’s work is inherently scientific and complex. This could be accomplished by spending thirty minutes a day reading scientific articles or listening to seminars in ecology, resiliency, or other relevant disciplines.

-Buy lunch for your accountant or finance manager regularly, they are extremely undervalued.

-It’s so important to work in a community that supports, emotionally and financially, conservation projects. I’m lucky that Galveston is so aware of its natural habitats and that the community fosters a culture of environmental stewardship. However, there are many places where this isn’t the case. In such areas shifting this culture can be an arduous process, though it’s necessary for any restoration or conservation work to be successful,

-If you like not having a regular work day, trying new things, and being involved in on-the-ground work, working in the nonprofit sector is for you. If you like working with people, spending time outside, and work for intrinsic rather than extrinsic motivators, then environmental outreach and conservation is for you.

November 6, 2015

Even Better than Gold: The Value of Protected Areas

A look into the Itaimbézinho canyon, Aparados da Serra National Park, Brazil

The implementation of protected areas (PAs) is considered the backbone strategy of efforts towards the conservation of biodiversity and natural resources. Currently, the global network of PAs covers approximately 18.8% of the planet (15.4% of terrestrial and inland water and 3.4% of marine and coastal areas, see Fig. 1), safeguarding millions of species and providing a series of important ecosystem services such as water regulation, carbon neutralization, food, climate change mitigation and adaptation, as well as cultural and aesthetic services. Although many countries have committed themselves to increment the coverage of PAs in the upcoming years through international agreements, such as the Convention on Biological Diversity (which aims to assure that by 2020, at least 17% of terrestrial and inland water and 10% of coastal and marine areas are covered by PAs), they never been so threatened as now! A current, and overlooked, practice known as protected area downgrading, downsizing, and degazettement (PADDD) has become widespread in many countries, threatening and dismantling PAs everywhere due to economic interests such as mining, new power plant projects, etc.  (for more information and a global map see here; Also, a while ago, I wrote a post about PADDD in Brazil here). Thus, estimating the economic relevance of PAs and bringing this information to political and socioeconomic discussions has become an urgent task.

Protected areas of the World. Extracted from: Juffe-Bignoli et. al. (2014).

Protected areas of the World. Extracted from: Juffe-Bignoli et. al. (2014).

In a pioneering study, Andrew Balmford and colleagues have attempted to estimate annual numbers associated with PA visitation and their local and global economic impact. They compiled data from more than 500 terrestrial PAs from 51 countries and built regional and global models to estimate, among other things, the number of visitors, direct expenditure by visitors (calculated from expenditures with fees, travel, accommodation, etc.), consumer surplus (defined as the difference between what visitors would be prepared to pay for a visit and what they actually spend) and the effect of some explanatory variables, such as PA size, remoteness and national income, that might affect visitation rates. Based on these explanatory variables they could predict visit rates for roughly 100,000 PAs.

Their results demonstrate that PAs receive approximately 8 billion visits/yr. Visitation rates are predicted to be higher in Europe, where PAs would receive a combined total of 3.8 billion visits/yr, and lower in Africa (69 million visit/yr). Associations with individual explanatory variables varied regionally in their effect, but as one might expect, national income is a common factor affecting visitation rates in every region. PAs generate approximately US $600 billion/yr in direct expenditure and US $250 billion/yr in consumer surplus. An older estimative shows that less than U$10 billion/yr is spent in protecting and managing PAs, so if this number still roughly valid, for each dollar spent in maintaining them, we would profit ~ U$60, which makes it a hell of a good deal! It is important to note that, although this study seems to be the most comprehensive representation of the global economic significance of tourism associated with PAs, the authors themselves recognize that this number is likely to be an underestimate, so the direct economic return of investing in PAs might be much higher than that!

Now, consider that the economic value of PAs is much, much, higher if we take into account the value of other ecosystem services. A recent study published by Costanza et al. 2014 shows that the global annual economic value of services provided by natural ecosystems is ~U$125 trillion. The same study shows that in less than 15 yrs, changes in land use has promoted an annual loss of U$4.3–20.2 trillion in ecosystem services. Although I could not find a global indicator of the economic participation of PAs as providers of ecosystem services, it seems an obvious conclusion that in a time where natural landscapes are being altered, destroyed and fragmented at very fast rates, PAs will have an even greater importance in protecting the natural and economic wealth of the planet.

So even under the economic development argument, one is left to wonder how governments, politicians and some other sectors of society can consider PAs a “waste of land” and endorse practices such as PADDD?! I don’t really have an answer to this question, but studies like Balmford et al. will surely help conservation biologists to make their discipline more effective and guide society to take batter informed decisions.

 

References

Costanza, R., et al. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152-158. DOI: 10.1016/j.gloenvcha.2014.04.002

Juffe-Bignoli, D., et. al. 2014. Protected Planet Report 2014. UNEP-WCMC. Available at <http://www.unep-wcmc.org/resources-and-data/protected-planet-report-2014>

Mascia, M. & Pailler, S. 2011. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conservation Letters 4(1): 9–20. DOI: 10.1111/j.1755-263X.2010.00147.x

March 11, 2015

Best of Biodiversity in 2014

By Tsirtalis (Own work) [CC BY-SA 3.0], via Wikimedia Commons

Biodiversity success of 2014! The Island night lizard was delisted under the Endangered Species Act in 2014. Photo by Tsirtalis (Own work) [CC BY-SA 3.0], via Wikimedia Commons

Happy New Year! To put the cap on 2014, we’ve highlighted some of our favorite biodiversity research and stories from the year. We’d love to hear what rocked your 2014 – pass us the link in the comments section!

Hundreds of new species have been described this year all over the world. Here are some of my favorites:

  • A fossilized skull of one of the largest mammals that walked along with the dinosaurs in the Late Cretaceous, was discovered in Madasgcar. The species named Vintana sertichi was a 9kg gondwanatherian herbivore, that reminds me of a coypu. Up to now, the only information we had about gondwanatherian mammals came from teeth and small pieces of jawbones;
  • A new species of annual fish from southern Brazil, Austrolebias bagual (bagual is a term from the Pampas that means untamed, unbroken horse or unsocial);
  • The mushroom looking animals, form the deep oceans of Australia, Dendrogramma.
  • A montane forest dwelling Tapaculo, form northeastern Brazil.
  • And the coolest one; a new species of tree frog from the Amazon has been named after the Prince of Darkness, Ozzy Osbourne.

At last, a couple of species  have been declared extinct in 2014 (for more information see the timeline of extinctions):

  •  Acalypha wilderia small shrub that inhabited the Cook Islands.The species has not been seen since 1929, and it seems that it disappeared due to habitat modification;
  • Stipax triangulifer. This is a “virtually unknown” arachnid species that was collected only once in 1894 in the Seychelles island of Mahe, and was never spotted again.

-Vinicius Bastazini

The Avian Phylogenomics Project, an international team with more than 200 researchers worked in a collective effort to sequence the whole genome of 45 bird species, comprising the main clades of modern birds. The project published 28 papers, in journals like Science, Gigascience and Genome Biology, in just one day! One of their key papers is Jarvis et al., “Whole -genome analysis resolve early branches in the tree of life of modern birds”. Among their main findings are: 1) Two events of speciation happened around 66 mya, just after the dinosaurs went extinct, giving origin to most of the birds we know nowadays; 2) Avian genome is very reduced, with few repetitive DNA; 3) Vocal learning evolved independently, at least twice; 4) Tooth loss happened from lost enamel mutations, around 116 mya. Nonetheless, the most important steps accomplished by the group, is a better representation of the phylogenetic relationship of birds, with some very impressive changes, e.g. falcons are closer relatives to parrots than to other group of prey birds like hawks. Several other fields of biology must benefit from this better solved piece in the puzzle of the tree of life, especially fields like ecology, which in the last years has investigated the phylogenetic structure of communities as a way to understand patterns of diversity on Earth and the processes determining them. Maybe two last very important messages from Jarvis et al. (and the other of papers resulting from this project) are that: 1) basic science (e.g. taxonomy) is an essential tool for the next big steps toward understanding life on Earth; and 2) improvements on scientific knowledge are more and more related to collective efforts of huge networks of scientist and institutions around the world, working together in ambitious projects.

– Jeferson Vizentin-Bugoni

Some of my favorites from 2014:

– Kylla Benes

orange lichen

Forget horses, 2014 has been the year of the lichen. And although most readers are probably uninclined to overthrow thousands of years of Chinese tradition to make it so, I’m here to tell you why it’s worth the effort. Ecologists studying lichens have worked hard this year to push their traditionally esoteric research subject out into mainstream ecology. In honor of 2014’s listicle-mania, here are the top four ways that lichenologists have really broken the mold. You won’t believe what they found…

4. Lichens impact ecosystems at both micro and macroscales. From Porada et al comes a brand-new estimation of how lichens contribute to global biogeochemical cycles. Zooming in, Delgado-Baquerizo et al show that lichen species in biological soil crusts can cause fine-scale variation in the nutrients and microbes that reside under them.

3. Lichens are great for testing general ecological theory and models, both new and old. Pastore et al found no evidence for a competition-colonization tradeoff in the life-history traits of lichens inhabiting rocks over a 30+ year experiment. Time to lay this old idea to rest? From Ruete et al comes a cool new model for estimating dispersal rates in a metapopulation that is at disequilibrium from presence/absence data, patch ages, and past distributions. Because really, when aren’t we in a disequillibrial state? And yes, they tested it with lichens because epiphytes are great models of meta-structure.

2. We have discovered that lichens have traits too! Farber et al found that the performance of lichens with light-absorbing versus light-reflecting pigments recapitulated the distribution of these species along a vertical light gradient in boreal tree canopies. Lichens, however, may be more variable in their traits than plants or animals. Asplund & Wardle found that the community-level response of lichen N and P-content to a nutrient gradient occurs mainly intra-specifically, and not because of species turnover. Perhaps fungi are more flexible?

1. It’s been a great year for lichens’ better half- the algae and cyanobacteria that do all the photosynthesizing in the relationship. Although historically underappreciated by lichenologists, this year saw a barrage of papers exploring diversity of these “photobionts”, from across whole communities and large taxonomic groups (Lindgren et al, Nyati et al, Sadowska-Des et al) to genetic diversity within a single lichen individual (Dal Grande et al). It’s becoming increasingly evident that partner specificity and local adaptation among photobionts is a key determinant of whether a lichen-forming fungal species has a broad (Werth & Sork, Muggia et al) or narrow distribution (Dal Grande et al). With increasing interest in the ecology of microbial systems, the role of symbiosis in the community ecology of lichens is ripe for research. If 2014 was the year of the lichen, 2015 will be for their algae.

– Jes Coyle

2014 by the numbers:

Hero Ant

This is what a hero looks like (Malagidris sofina)

221 – the number of new species described by CalAcademy of Sciences this year. I was particularly charmed by the description of the defensive behavior of the Hero Ant of Madagascar (Malagidris sofina), which hurls itself at invaders, kamikaze-style, knocking them off the nest. See for yourself.

2,218 – Number of plants and animals currently listed as threatened or endangered by the Endangered Species Act. There is an active recovery plan for about half of those.

1 – Number of species delisted under the ESA during 2014. The Island night lizard (Xantusia riversiana), the poster child of this post, was originally listed in 1977, and has benefitted from the removal of invasive mammals from the Channel Islands, and is considered recovered.

90% – Estimated population losses for the Monarch butterfly over the past two decades. They are now being considered for ESA listing.

1.6 million – Area (km²) proposed in 2014 as additions to marine protected areas worldwide, including Fiji, Gabon, Palau, and the US.

– Emily Grason

December 30, 2014

Why Conservation? Communicating Applied Biodiversity Science

ABS_2color_web

Applied Biodiversity Science Program – Texas A&M University

You might have a favorite science writer. Mine are David Quammen, Bill Bryson, Carl Sagan, and Tim Flannery. Others may be more inclined to read Pulitzer Prize-winning and nominated authors like Jonathan Weiner, Siddhartha Mukherjee, or James Gleick, MacArthur-fellow Atul Gawande, or consummate greats like E. O. Wilson, Richard Dawkins, Stephen J. Gould, and Oliver Sacks. Or perhaps books aren’t all you’re interested in. In that case you may be a fan of Carl Zimmer’s blogging or the stories and editorials from journalists/authors Malcolm Gladwell or Stephen J. Dubner.

It’s likely you’ve read at least one of these authors. Like most readers you were probably impressed by how well they articulated the complexities and subtleties of their topic: everything from astrophysics to evolution, cancer, neurology, chaos theory, economics, and psychology. If you find an author who draws you into a topic that wouldn’t otherwise gain your attention, particularly an unfamiliar scientific discipline, take notice. Take stock of what they have accomplished by gaining your interest and curiosity. As George Gopen and Judith Swan stated in their 1990 for American Scientific, “the fundamental purpose of scientific discourse is not the mere presentation of information and thought, but rather its actual communication.” Good communication requires gaining the reader’s attention. Attention requires garnering interest and curiosity.

In our ever-connected world with vast communication and social networking ability, we have the ability to do just that. We possess the tools to communicate science to a diversity of people in a diversity of ways.

As a member of the Applied Biodiversity Science Program (ABS) at Texas A&M University I find myself in a position where communicating science is an imperative for success. The ABS program is graduate program originally funded by the National Science Foundation as part of their Integrative Graduate Education and Research Traineeship (IGERT) program. The principle mission of ABS at Texas A&M is to achieve integration between biodiversity research in the social and natural sciences with on-the-ground conservation practices and stakeholders.

To that end, a foundational component of ABS is to communicate across scientific disciplines with various institutional actors to facilitate broader impacts across the realm of conservation. In essence, the ABS Program seeks to produce applied scientists who can communicate effectively across disciplines. A natural corollary of this goal is the ability to communicate science outside the realm of science. In this respect, our ABS Perspectives Series is intended to communicate more broadly and inclusively who applied biodiversity conservationists are, what we study, where we conduct research, how we conduct research, and why we are doing it. The current issue of the ABS Perspectives Series, features experiences from the Caribbean, the United States, Sénégal, Ecuador, Nicaragua, and Costa Rica. Contributions cover topics ranging from captive parrot re-wilding with pirates to blogging in the Nicaraguan forest with limited Internet access.

Perhaps more importantly, the ABS Perspective Series wants to reach out and share ABS student and faculty experiences with a diverse readership to raise awareness of biodiversity conservation issues. Outreach is an important axiom of actionable science, especially outreach that informs, improves and influences management and policy. I consider both the ABS Perspectives Series and BioDiverse Perspectives outreach initiatives to communicate the biodiversity conservation mission to the general public, communities where our research has been conducted, fellow academics and practitioners, and institutions that can provide logistics, infrastructure, and support. We must intend to make and practice making our research accessible and intriguing to everyone.

November 18, 2014

Deconstructing Defaunation

Many species globally are threatened by numerous biotic and abiotic stressors, resulting in declining population and shifts in ecosystem functioning.

Many species globally are threatened by numerous biotic and abiotic stressors, resulting in declining population and shifts in ecosystem functioning.

Science recently released a special issue on defaunation, which spanned seven articles detailing the recent decline in animal species diversity and abundance.  Among others, the issue included two peer-reviewed articles, an opinion piece, and an analysis of national policies tied to global and local conservation strategies.  The statistics associated with defaunation are sobering, but the issue presents a few solutions to help us curb this global environmental crisis.

First, a damage assessment.  According to Defaunation in the Anthropocene, between 11,000 and 58,000 species go extinct each year.  At least 16% of all vertebrate species are endangered or threatened, and there’s been a 28% decline in their abundances since the 1970s.  Approximately 40% of invertebrate species are considered threatened, though less than 1% of described invertebrates have been assessed.  There is data to suggest that invertebrate species’ abundances are also decreasing, but it’s difficult to put an exact number on that decline since they are not as well monitored as vertebrates.  On a global scale, these statistics may be underestimated because our monitoring practices bias our data toward specific taxa.  Groups of large and charismatic organisms, like mammals and birds, get most of the attention because they are easier to monitor and more sympathetic than invertebrates, amphibians, and reptiles.  In some systems this is beneficial, where large mammals and birds are the most threatened and contribute significantly greater function to an ecosystem than smaller organisms.  However the opposite can be true in other instances, so it is critical that we prioritize greater sampling of underrepresented groups.

Additionally, there is concern that such measures of declines in species and abundance may not reflect the true extent of our ecological troubles.  Shifts in ecosystem compositions may not be reflected in a given measurement of biodiversity, yet are nonetheless indicative of environmental change.  The primary goal behind many conservation strategies has been to restore a species or population to a certain number.  While population viability is critical for any species, the authors argue that ecosystem functionality is a useful yet underutilized goal for conservationists.  With this goal, the composition of an ecosystem (i.e. the identity and abundance of resident species) can be more flexible, as long as the ecosystem functions in a similar way.  The issue with this then becomes how to measure ecosystem function, or rather, against what do we compare it?  Do we set an arbitrary time in history that we would like to restore it to, or do we attempt to maintain its function while integrated with a unique environment managed by humans?  Some proponents of the latter strategy see historical comparisons as unrealistic and uninformative, especially given our changing climate.  Regardless, restoring the functionality of ecosystems is a key predictor of the future success of not only animal and plant populations, but the human population as well.

One of the strongest arguments this issue makes derives from its use of specific economic values of animals and ecosystems.  According to the article Wildlife decline and social conflict, the harvest of land and sea animals accounts for $400 billion annually around the world.  Defaunation in the Anthropocene claims that pest control by native U.S. predators is worth approximately $4.5 billion annually, and that the decline in North American bat populations (a specific type of pest controller) has cost the agriculture industry $22 billion in lost productivity.  Insect pollinators are required for about 75% of the world’s food crops, and are therefore responsible for approximately 10% of the economic value of the entire world’s food supply.  According to the World Bank, food and agriculture represents about 10% of global GDP, which in 2012 was estimated at $72 trillion.  If we take total food supply to be approximately $7.2 trillion (again, estimating), then insect pollinators are worth around $72 billion dollars.  These estimates apply tangible figures to a broad and occasionally overwhelming issue, and may be good starting points to unite many different stakeholders under a common currency.

The article Reversing defaunation: Restoring species in a changing world details the different strategies conservationists use to preserve species abundances and their associated ecosystem functions.  These strategies can broadly be grouped into two categories, translocations and introductions.  Translocations involve moving individuals within their indigenous range to either reinforce a local population or to reintroduce them following a local extinction.  Introductions, on the other hand, move species outside of their indigenous range to prevent a global extinction of a species or to replace a lost ecosystem function.  Though planning a conservation strategy in terms of these labels can be useful for setting long-term goals, they are not mutually exclusive.  Certain strategies can incorporate aspects of both translocation and introduction, or can introduce a species both to preserve its numbers and to restore ecosystem functionality.  Therefore, it’s best to use these terms as guidelines for how to measure the success of any plan rather than as constraining requirements.

These losses in biodiversity, and their associated shifts in ecosystem functioning, are primarily driven by a combination of over-hunting, habitat destruction, impacts of invasive species, climate change, and disease.  The Defaunation articles make a point of addressing national policies aimed at preventing species extinctions, namely those regarding over-hunting and poaching.  Many of these policies simply impose penalties for illegal hunting rather than address the underlying causes of the issue, poverty and starvation.  While it’s unrealistic to expect a conservation plan to alleviate world hunger and income inequality, it may be useful to consider animal overexploitation as an unintended side-effect of the economic cycle caused by scarcity.  Supply and demand states that as a species becomes less common, its value on the market rises.  However, this scarcity also leads to a reduction in the amount caught per unit effort.  The rise in price drives a greater hunting effort by the sellers, further decreasing the population, and the cycle begins again.  Since many of these hunters are using their profits to feed themselves or their families, simply enacting penalties for poaching may not have the intended effect.  Overhunting is not a simple problem, and most likely will not have a simple solution.  However, the only way we can begin to address it is by determining its causes.

September 30, 2014

Diverse Introspectives: a conversation with John Harte

john_harte_crop

Some may know UC Berkeley professor John Harte from his work developing the MaxEnt Theory of Ecology (check out July’s TREE for an accessible pedagogic overview), others may be more familiar with his long-term research on the effects of climate warming. Older readers likely recall his 1988 classic book on environmental problem solving named after an improbably shaped bovine. I had the opportunity to meet and chat with John at the recent Gordon Research Conference on Unifying Ecology Across Scales, where he and Mike Sears gave very interesting and divergent opening talks on how ecologists might bridge the problem of scale for a more productive science.

The very most important thing to me, being a scientist, is to seek out unification- to look for simplicity where initially we see nothing but complexity, and to see the underlying general principles that govern the phenomena of interest. In ecology we have a wealth of phenomena… everywhere we look we see uniqueness, but being a scientist I refuse to accept that and I look for what general underlying patterns and principles govern this wealth of phenomena. And so, to seek that, I love looking at huge databases and I love walking in the woods and observing patterns and the details. But, my major approach to seeking unification is to develop fundamentally-based theory.

I know a lot of people in ecology love to make models of phenomena. You see some behavior, you see a particular species dwindling in numbers on the edge of extinction and so you make a model of that phenomenon. Or, you see a funny pattern where you see some sort of regularity in who’s associating with whom, and so you build a very mechanistic process-based model to explain that behavior. Out of the thousands of possible traits and mechanisms that might be working, we use our intuition and pick two or three that we think are important and then we build a mathematical model and it’s got parameters so we show that if we pick the parameters right we can explain the behavior. I find that totally uninteresting. That is not what I do. But it does characterize a lot of good and important work in ecology. It’s just not personally what turns me on. What does turn me on is seeking out very general principles that must be true from which very general conclusions can be based, which can be tested, which are falsifiable, and which potentially, if the theory is right, can explain a huge amount of information.

As an example, I’ve always been very interested in species-area relationships. I think they encapsulate a huge amount of information. Now, if you look at all the known species-area curves in the world, of everyplace where somebody’s gathered species-area data, and you plot them all on one big piece of graph paper- log species vs. log area, you will find that the data points fill the graph almost completely. You get every possible behavior when you just do a plot of log S vs log A. There’s no regularity. I didn’t really think that had to be the case. What I learned from developing the theory of macroecology based on the maximum-information entropy principle, is that the theory makes a very startling testable prediction about the shape of the species-area relationship. It says that if you take any species-area curve and you plot the local slope of the log-log plot, what we call ‘z’, at any scale against a certain scaling variable that the theory identifies, namely, the number of individuals at that scale divided by the number of species at that scale, all species-area curves should collapse onto a single universal curve. And it turns out that they do. If you look at every species area curve in the world, there are no exceptions. Even ones that involve microbial species-area relationships like the one my former student Jessica Green developed. So we think we understand the species-area curve. It’s not a power-law- it obeys a universal scale-collapsed behavior which theory, not a model, predicts. To me that was a significant break-through, to be able to see that all species-area curves fall onto one universal curve if you re-plot it correctly. And the neat thing is, it’s not just something we guessed. The theory told us we had to re-plot this way.

It’s been a theme. When I was a kid, my major interest was bird-watching and natural history. I collected everything I could collect. My bedroom as a kid was a museum. It was extraordinarily overstuffed with fascinating little things I would find. I would catalog them and arrange them and study them. But even then I remember thinking, “where’s the simplicity behind all of this detail?” I went into physics partly because I thought that that was a branch of science where you could freely exercise this desire to seek universality, generality and unification. Physicists are very open to that goal- that’s what they do. My first faculty position was at Yale University and I realized 6 or 7 years after my PhD that I really wanted to go back to what I loved the most, which was biology and especially ecology. So I left the physics department and took a job as an ecology professor at Berkeley in the early 1970s and I’m very glad I did it. But, I’ve been pursuing that same theme, that same interest, all the way through, from childhood birdwatching to physics and back to ecology.

No, it was a very specific thing. During the Vietnam War, I co-organized a day of teach-in’s about the war, where we shut down all the science classes at Yale and we brought in speakers to educate ourselves, the faculty and the students, about the war. At that event one of the people I invited was a very famous physicist, a Nobel laureate who had gone to Yale as an undergrad, and at the dinner of the teach in, he asked me if I would be interested in joining a small group of physicists who were going to try to do something about environmental issues- take a summer or a year off from regular physics and see if we could make some headway. So we did. We studied a problem in the everglades of Florida, where there was a proposed super-sized jetport being planned to land the super-sonic planes that we thought we were going to build. So we studied the Everglades. We took 3 months and did nothing but immerse ourselves in the problem. I ended up writing a paper with a colleague that looked at what would happen if you drained all the marshes in central south Florida where the big jetport complex would be. We were able to show with a little bit of physics that it would lead to salt intrusion into the water supplies of over half a million residents of the Gulf Coast of south Florida. That reached the desk of the secretary of transportation who said to Nixon, who was president at the time, “We can’t build this jetport- we can’t throw away Florida in the election, and you will if you destroy the water supply of half a million voters.” So they canceled the jetport. So I actually got back into ecology with the major goal of doing very practical applied work to prevent other disasters, like wrecking the Everglades. But then as time went on I got more and more interested in big theoretical questions.

Great question! I have a post-doc, Justin Kitzes, a brilliant guy, who is doing exactly that (see ‘Continuing the Conversation with Justin Kitzes’). His main interest in conservation biology, but he’s really a good theorist too. So he’s been taking the predictions of maximum entropy theory and applying them to very practical questions. Questions like, ‘What is the magnitude and origin of this ‘so-called’ extinction debt?’, and ‘How many species do we lose if we deforest a portion of the Amazon?’ People have realized from way back that the species-area relationship has something to do with that, but now that we know the true behavior of the species-area curve, we can very accurately estimate species loss under habitat destruction, or under loss of climatically suitable habitat. Another question that Justin and I have been looking at that is not exactly a conservation issue, although people have been fascinated by it, is ‘How many species of beetles are there in the Amazon?’ All we know is that we’ve labeled about 1.8 million species total, but we think there are way more than that. We have a paper in review right now that projects out from small plot data using the species-area prediction, what the species richness is at very large spatial scales. So we make predictions and they may or may not be of conservation value, but I think it is useful to have a measure, to have a sense of how diverse our planet is.

I think science progresses from failure not from success. It’s failure that drives science forward. For example, when there’s a discrepancy in something that we always thought we understood and then realize our theory is incompatible with some new phenomena, and we say, “That theory is not correct!” And that’s what make science move forward. That’s how progress happens. So, my view is that, there is nothing more important, nothing we should look forward to more than discrepancies between our favorite theories and reality. Because then we improve. We figure out what the next step is.

A very famous example in physics was the ideal gas law, PV = nRT. It’s a very basic idea from thermodynamics and it’s a beautiful law, but it actually fails at very high pressure and very high temperature. Its failure led physicists to realize that there was something called dipole-dipole forces between molecules, a very important thing in physics. And it was only from the failure of a prediction that they were led to discover this mechanism. Openness to failure and being willing to revise, upgrade, and form the next-generation theory is very very critical. So that’s what not marrying your theory means, don’t get so wedded to it that divorce looks impossible. As far as how that idea helps connect people to biodiversity, I’m not sure it does because we are in a sense all married to biodiversity. Biodiversity is what drives the human economy. Ecosystem services are dependent on diversity and the human economy is dependent on ecosystem services, and we should think of that as a catholic marriage that you can’t get out of. You can’t divorce yourself from the natural world. Unfortunately, civilization acts as if it’s trying to divorce itself from biodiversity and nature.

Oh boy, don’t get me started… It’s actually appalling how little math and physics ecology students have. Not all, some come in very well prepared. But, I firmly believe that departments of ecology and evolution should be requiring more of their students to take at least one theory course with mathematical methods, stochastic modeling, more than just the basic Lotka-Voltera equations, which is about all most ecologists ever learn. I mean, those equations are sort of a good laboratory for introducing oneself to quantitative reasoning, but stopping there is not adequate. We require a good deal of statistics on the part of our students, but that’s not the most important kind of math. Students should also be learning stochastic mathematics and probability theory, using differential equations to study things like stability. There’s so much confusion about these things and if students were better educated it would make for better grad students.

I see a couple of risks on the horizon. One of them is the ease with which we can simulate numerically and handle massive data sets. There is a risk that this will divorce people from what really matters, which is the natural world. Ecologists who are incredibly adept at manipulating data and running simulations, but who never just walked in the woods, observed and in their minds sorted and catalogued the things that they are seeing, those students have a great handicap in the long run. Separation from the natural world because the silicon world is so easy to enter- that’s very dangerous. The other dangerous thing is that we get obsessed with mechanistic tinker-toy models and do not look beyond to the broad fundamental theory, which doesn’t require computer adeptness or capacity to manage big data sets or simulate numerically. Fundamental theory really is more a matter of thinking through things than running amazingly complicated programs. Think of three vertices on the triangle. There’s the real world, nature, there’s what I call theory, and there’s the silicon world. I’d like to see people spend most of their time on the leg between the theory vertex and the real world vertex and only when you are forced kicking and screaming, go to the silicon world and simulate.

From general laws flow absolutely bullet-proof insights and this is what we most need. To the extent that ecology can be based on broadly applicable laws, not models based on arbitrary choice of dominant mechanisms (which everybody will argue about until the cows come home), if you can base insights and predictions on laws, they are irrefutable and that’s how science can best influence policy. Ecology is not in good shape when it comes to influencing policy. For example, if an asteroid is going to hit the planet, congress will call upon and believe the physicists who can calculate the likelihood of impacting when, and maybe even what to do about it, because those physicists can base their statements on fundamental laws. Ecologists don’t get called or listened to when it comes to any big issue. We don’t have respect in policy circles because we haven’t figured out the laws of ecology. Instead we have a gazillion models of ecology, stories, and intuitions. Some of them are right, some of them are wrong, some of them aren’t even right or wrong, they’re not even testable, which is even worse than being wrong. The need for developing fundamental theory is just huge. If we’re going to save the planet, I think it’s critical that we do.

Besides theory, I like to do field work. I hate lab work- my students won’t even let me in the lab. I spend summers at the Rocky Mountain Biological Laboratory and this is my 38th consecutive summer. Twenty-seven years ago, I had this idea that everybody tried to talk me out of, which was to set up an outdoor climate warming experiment. We set up this big bank of overhead electric heaters that radiate heat down onto the ground to simulate the climate of the year 2050, roughly give or take. We have been running this now for 25 years. The heaters are on summer and winter, day and night. It’s the longest running experiment of its kind. But, when I set it up I got all kinds of arguments that this was a stupid thing to do. The first proposal to NSF, I got a review back that said “It won’t work because as the heat radiates down to the ground the wind will blow the radiant heat away.” So they rejected the proposal. I wrote back to the program manager and I said, sarcastically, “Oh, so that explains why when I go out at night with my flashlight and it’s windy the light beam doesn’t hit the ground, it blows away.” And the program officer wrote back and said “Oh. I see what you mean”.  They had rejected the proposal by taking the word of a reviewer that it wasn’t going to work and they didn’t know enough physics to understand that electromagnetic radiation doesn’t blow away. So by persevering, there have been 33 journal papers that have come out of this one experiment, 9 PhD theses, and over 100 undergrads have gotten their field training with me doing this. It certainly is the single biggest field experiment I’ve ever done. I’m glad I persevered- that opened up so many doors for me and for my students especially.

Well let me ask you a question. What do you think are the similarities and differences between ecosystems and physical systems? Some people say physical systems are really basically simple and ecosystems are intrinsically complex. Does that resonate with you?

Well I’ve been thinking about this a little bit. That there is a system in physics that everybody agrees is mind-bogglingly intractable, and that’s turbulence. Now the thing about turbulence that makes it interesting is that it’s a phenomenon that occurs at all scales. Little turbulent eddies become bigger, become bigger, BECOME BIGGER, and finally become huge atmospheric vortices. It’s why climate is so hard to model in detail- because you can’t make clean scale separations. Now my view is that complex systems are systems where you can’t make clean scale separations. So, the question is, can you in ecology? This is what we’ve been trying to demonstrate with workable theory. That you can think of the trees and the forest. The forest is the macroscale, the trees are the microscale. You could go to a lower microscale like cells, but let’s stop with the individual trees as the simplest unit in ecological theory. If you do that, you can apply ideas from statistical physics and scale separation works. It’s a simplification, because there are phenomena within a forest that are smaller than the forest but bigger than the tree, associations between trees and so on, but, to a first approximation you can make that macroscale-microscale separation. You can’t do it with turbulence. So if that is a correct way of thinking, it suggests that we’ll have an easier time with ecological theory than we would with a theory of turbulence.

August 31, 2014

Continuing the Conversation: The Role of Theory in Conservation, a follow-up with Justin Kitzes

justin_kitzes_crop

In my conversation with John Harte, he mentions work by his post-doc, Justin Kitzes, who is interested in how ecological theory can be used in conservation. Two weeks after the Gordon Conference, where I interviewed John, I found myself at ESA, where Justin was coincidentally hosting a symposium on “Advancing Ecological Theory for Conservation Biology. I snagged a quick 10-minute conversation with Justin after what turned out to be a fascinating symposium. Here is, in his own words, why theory is important for conservation:

I’ll start with a more general answer to your question, why theory is relevant for conservation. In some sense, without theory ecology is a collection of stories. We can go to individual systems and we can study them very deeply. We can understand a lot about how they work and what makes them unique, but what fundamentally makes ecology a science is that we believe that there is some deeper order and deeper pattern underneath all of these individual observations of species and systems. In conservation, we’re often in a situation where we don’t have all of that deep information. We need to take what we’ve learned somewhere else and apply it in a context where we don’t have a lot of data, where we need to make a decision rapidly, and in those situations it’s often the case that theory offers some of the best information that we’re going to get in practice in order to be able to make decisions. In a broad sense, I think that the role of theory in conservation is filling in the gaps. When we don’t have time or money to study everything to the extent that we want to, we use theory to do the best we can.

The particular type of theory that I work with and that John works with is macroecology, which is, generally speaking, the focus on statistical patterns. If we have evidence that there are some sort of general universal underlying patterns that govern how communities structure themselves, we can use that information to make decisions where we don’t have a lot of time or a lot of money. Probably the canonical example of this is the species-area relationship, which tells you as area grows and shrinks, how the number of species goes up and down. That pattern has been used in conservation for probably 40 years or more by now. It’s a good way at providing a first pass estimate of something like extinction risk when you really don’t have much else to go on.

The species area relationship is a really interesting case. Arrhenius in the 1920’s was probably the first one to put a number on it, and pretty early on it was thought that it was a power law. So on a log-log plot it comes out to a straight line and the slope of that line was about 0.25. There was some early work, for example Jared Diamond’s paper on land bridge islands, that showed empirical fits close to 0.25. Frank Preston and Robert May followed that up in the 60s and 70s with some great work showing that a particular form of the species abundance distribution, the canonical log-normal, would lead precisely to a power law of a slope of 0.25. So for a while there everyone was happy. Of course there was always some scatter, but maybe that was just noise. Rosensweig comes along in 1995 with his book and really hits home the fact that, no, it’s not just scatter, there are patterns in how systems deviate from that traditional model. Over time, people like my PI, John Harte, start to look and see, there’s not just scatter. There’s curvature on a log-log plot. It’s concave downward. It bends over. And that seems to be pretty consistent. So it’s not just that the slopes are bouncing around. There’s something systematic going on here. One of the most interesting outcomes of MaxEnt, which was really not realized until after the original theory came out, is that it makes a prediction for the slope of the species-area relationship. What we normally take to be constant at 0.25, is actually decreasing as the number of individuals per species increases. So basically, as plots get large, the slope of the relationship is predicted to decrease. It turns out that really works well so long as you’re not crossing major habitat boundaries. It does an amazing job of collapsing what looked like an enormous shotgun blast of scatter down to something that follows a predicted curve, pretty darn closely, for what we consider close in ecology.

You never know what the right answer is until the future happens. When we’re talking about global change we’re in the business of predicting the future. So you have a couple choices. You could do nothing, that’s always one choice, right? You could look at the data qualitatively as best you can and try to decide what to do, and that can be a very reasonable option. Or you can rely on what, in the best case scenario, we’ve been spending 100 years trying to do, which is figure out how ecosystems work and to try to apply some of that knowledge to try to figure out what might happen in future. The embodied knowledge of how ecosystems work has shown up in the body of theory that underlies ecology. It’s also important to recognize that theory is not just mathematical theory. A lot of theorists work with mathematical theory, but things like the intermediate disturbance hypothesis or trophic cascades, those can be qualitative theories and those can play a role in trying to make predictions.

I do think that theorists and conservation biologists don’t talk to each other enough. I think there’s a cultural divide there in addition to differences in the backgrounds of the different communities. But if there was one thing I could say, it is that I really believe that theory is underutilized in conservation. I think across the board, not just type of theory I do, we’re not taking advantage of that body of knowledge that we put into our equations when it comes time to actually make decisions on the ground. And that’s not to say that theory is going to answer our questions and we’re going to have a technocratic world where we can predict exactly what to do. But there’s information there that is missing from the applied conversations that we should try to do a better job of bringing in.

August 30, 2014